#メディカルテクニカ

emailcontact

#冠動脈の血流の層流乱れを、#非観血、簡易的に検知

(薬事未認可に付き注意)


PCの機能が向上し、#Descrete_Wavelet 手法が、お求めやすい低価格で
実現し、#心房のP波を自動検出できるようになりました、
#心房細動の自動解析能をお試し賜われれば幸いです
臨床用 #薬事認可済


#Labtech社は、当社独自の方法による #P波自動検出と #心房細動自動解析手法
#T_Wave_Alternans 解析手法
を開発し、当社ホルターに搭載



#VectraCardiology, #Heart_Rate_Variability , #TWA_オルタナンス
#Turbulence、#3D可変表示、#Spectral_Analysis等が装備

Theory of the #P_wave_detection

The algorithm first finds the  the possible positive and negative wave peaks
based on zero transition searching, then validates them with comparing
to reference P waves.

The P wave detection needs high amplitude resolution. This value is better,
than 0.6 uV / bit in the Cardiospy system.  With this resolution and
the effective filter system which uses wavelet transformation,
the Cardiospy system is able to detect P waves less than 50 uV of amplitude.

 

Validation of the P wave detector

The validation is carried out on 10 pcs 12 channel and 10 pcs 3 channel ECG
reference records. The reference records include the P wave  annotation.  12
of the 20 records are taken from the MitBih database, 8 records are
taken from the Labtech database (30000 ? 30007). 

12 ch records

s0014lre, s0292lre, s0302lre, s0331lre, s0364lre, s0422_re, s0431_re,
s0437_re, s0549_re, s0550_re

3 ch records

mgh001, mgh007, 30000, 30001, 30002, 30003, 30004, 30005, 30006, 30007

 

Validation result:

Sensitivity:                       95.42%

Positive predictivity:         97.16%

#先天性心疾患の教科書 #Pedcath8

#ケアテイカメディカル社ー#研究用
#非観血血圧・#連続解析観血血圧計
・#ポータブル・#ウエアラブル・#一拍毎解析出力付き

httpswww.ncbi.nlm.nih.govpmcarticlesPMC5361833

 

BMC Anesthesiol. 2017; 17: 48.

Published online 2017 Mar 21. doi: 10.1186/s12871-017-0337-z

PMCID: PMC5361833

PMID: 28327093

#Continuous_Non-invasive_fingercuff #CareTakerR comparable to invasive intra-arterial pressure in patients undergoing major intra-abdominal surgery

Irwin Gratz,1 Edward Deal,1 Francis Spitz,1 Martin Baruch,2 I. Elaine Allen,3 Julia E. Seaman,4 Erin Pukenas,1 and Smith Jean1

Author information Article notes Copyright and License information Disclaimer

This article has been cited by other articles in PMC.

 

Associated Data

Data Availability Statement

The datasets generated during and analysed for the current study are available from the corresponding author on reasonable request.

 

Abstract

Background

Despite increased interest in non-invasive arterial pressure monitoring, the majority of commercially available technologies have failed to satisfy the limits established for the validation of automatic arterial pressure monitoring by the Association for the Advancement of Medical Instrumentation (AAMI). According to the ANSI/AAMI/ISO 81060?2:2013 standards, the group-average accuracy and precision are defined as acceptable if bias is not greater than 5 mmHg and standard deviation is not greater than 8 mmHg. In this study, these standards are used to evaluate the CareTakerR (CT) device, a device measuring continuous non-invasive blood pressure via a pulse contour algorithm called Pulse Decomposition Analysis.

Methods

A convenience sample of 24 patients scheduled for major abdominal surgery were consented to participate in this IRB approved pilot study. Each patient was monitored with a radial arterial catheter and CT using a finger cuff applied to the contralateral thumb. Hemodynamic variables were measured and analyzed from both devices for the first thirty minutes of the surgical procedure including the induction of anesthesia. The mean arterial pressure (MAP), systolic and diastolic blood pressures continuously collected from the arterial catheter and CT were compared. Pearson correlation coefficients were calculated between arterial catheter and CT blood pressure measurements, a Bland-Altman analysis, and polar and 4Q plots were created.

Results

The correlation of systolic, diastolic, and mean arterial pressures were 0.92, 0.86, 0.91, respectively (p?<?0.0001 for all the comparisons). The Bland-Altman comparison yielded a bias (as measured by overall mean difference) of ?0.57, ?2.52, 1.01 mmHg for systolic, diastolic, and mean arterial pressures, respectively with a standard deviation of 7.34, 6.47, 5.33 mmHg for systolic, diastolic, and mean arterial pressures, respectively (p?<?0.001 for all comparisons). The polar plot indicates little bias between the two methods (90%/95% CI at 31.5°/52°, respectively, overall bias?=?1.5°) with only a small percentage of points outside these lines. The 4Q plot indicates good concordance and no bias between the methods.

Conclusions

In this study, blood pressure measured using the non-invasive CT device was shown to correlate well with the arterial catheter measurements. Larger studies are needed to confirm these results in more varied settings. Most patients exhibited very good agreement between methods. Results were well within the limits established for the validation of #automatic_arterial pressure monitoring by the AAMI.

Keywords: Non-Invasive, CareTaker, Central_blood_pressure_, Finger_cuff, Intra-Arterial pressure


#Tensiomed 社 #Arteriograph 24 #血管脈波検査装置

ご注意:中心血圧と関連機能は検証が必要です、


臨床用ー #薬事認可済

Central blood pressure: current evidenceand clinical importance

Carmel M. McEniery1*, John R. Cockcroft2, Mary J. Roman3,Stanley S. Franklin4, and Ian B.Wilkinson1

1Clinical Pharmacology Unit, University of Cambridge, Addenbrookes Hospital, Box 110, Cambridge CB22QQ, UK; 2Department of Cardiology,Wales Heart Research Institute, Cardiff

CF14 4XN, UK; 3Division of Cardiology,Weill Cornell Medical College, New York, NY 10021, USA; and 4University of California, UCI School of Medicine, Irvine, CA 92697-4101, USA

Received 29 April 2013; revised 27 November 2013; accepted 17 December 2013; online publish-ahead-of-print 23 January 2014

and central pressure. Therefore, basing treatment decisions on central, rather than brachial pressure, is likely to have important implications

for the future diagnosis and management of hypertension. Such a paradigm shift will, however, require further, direct evidence that selectively

targeting central pressure, brings added benefit, over and above that already provided by brachial artery pressure.Central pressure Blood pressure Anti-hypertensive treatment Cardiovascular risk

Introduction

The brachial cuff sphygmomanometer was introduced into medicalpractice well over 100 years ago, enabling the routine, non-invasive,

measurement of arterial blood pressure. Life insurance companieswere among the first to capitalize on the information provided by

cuff sphygmomanometry, by observing that blood pressure inlargely asymptomatic individuals relates to future cardiovascular

risk?observations that are nowsupported by a wealth of epidemiologicaldata.1 The most recent Global Burden of Disease report2

identified hypertension as the leading cause of death and disabilityworldwide. Moreover, data from over 50 years of randomized controlled

trials clearly demonstrate that lowering brachial pressure,in hypertensive individuals, substantially reduces cardiovascular

events.1,3 For these reasons, measurement of brachial blood pressurehas become embedded in routine clinical assessment throughout the

developed world, and is one of the most widely accepted surrogatemeasures for regulatory bodies.he major driving force for the continued use of brachial blood

pressure has been its ease of measurement, and the wide variety ofdevices available for clinical use. However, we have known for over

half a century that brachial pressure is a poor surrogate for aorticpressure, which is invariably lower than corresponding brachial

values. Recent evidence suggests that central pressure is also morestrongly related to future cardiovascular events4 ? 7 than brachial

pressure, and responds differently to certain drugs.8,9 Appreciatingthis provides an ideal framework for understanding the much publicized

inferiority of atenolol and some other beta-blockers,10 comparedwith other drug classes, in the management of essential

hypertension. Although central pressure can now be assessed noninvasivelywith the same ease as brachial pressure, clinicians are unlikely

to discard the brachial cuff sphygmomanometer withoutrobust evidence that cardiovascular risk stratification, and monitoring

response to therapy, are better when based on central ratherthan peripheral pressure. Central pressure assessment and accuracy

will also have to be standardized, as it has been for brachial pressureassessment with oscillometric devices. This review will discuss our

current understanding about central pressure and the evidencerequired to bring blood pressure measurement, and cardiovascular

risk assessment into the modern era.

Physiological concepts

Arterial pressure varies continuously over the cardiac cycle, but inclinical practice only systolic and diastolic pressures are routinely

reported. These are invariably measured in the brachial arteryusing cuff sphygmomanometry?a practice that has changed little

over the last century. However, the shape of the pressure waveform* Corresponding author. Tel: +44 1223 336806, Fax: +44 1223 216893, Email: cmm41@cam.ac.uk

Published on behalf of the European Society of Cardiology. All rights reserved. &The Author 2014. For permissions please email: journals.permissions@oup.com

European Heart Journal (2014) 35, 1719?1725 doi:10.1093/eurheartj/eht565

 

Pressure measured with a cuff and sphygmomanometer in the brachial artery is accepted as an important predictor of future cardiovascular risk.However, systolic pressure varies throughout the arterial tree, such that aortic (central) systolic pressure is actually lower than corresponding brachial values, although this difference is highly variable between individuals. Emerging evidence now suggests that central pressure is better related to future cardiovascular events than is brachial pressure. Moreover, anti-hypertensive drugs can exert differential effects on brachial and central pressure. Therefore, basing treatment decisions on central, rather than brachial pressure, is likely to have important implications for the future diagnosis and management of hypertension. Such a paradigm shift will, however, require further, direct evidence that selectively targeting central pressure, brings added benefit, over and above that already provided by brachial artery pressure.As discussed earlier, a full synthesis of the available evidence concerning

central pressure and the risk of future cardiovascular events is now required. However, it will also be necessary to determine the clinical relevance of differences between brachial and central pressure

for the individual patient, especially given the relatively high correlation between the two. Emerging data support the prognostic superiority of both 24-h ambulatory blood pressure monitoring

(ABPM)79 ? 81 andhomemonitoring81 in comparison with office measurements. Interestingly, a recent study82 demonstrated that 24-h ambulatory cuff pressures were comparable with office central pressure

measurements in the prediction of risk, although the significance of this study awaits confirmation.83 As yet, there are no data comparing the predictive value ofhomemonitoring vs. central pressure in the

prediction of risk. Ultimately, it will be necessary to evaluate the prognostic value of 24-h ambulatory central pressure.With the recent development of ambulatory central pressure systems,84,85 this is now

possible and it may be reasonable to hypothesize that 24-h central, rather than brachial ABPM would be superior in terms of risk prediction.

Medical Teknika MedicalTeknika Medical Teknika Medical Teknika Medical Teknika
Medical Teknika Medical Teknika Medical Teknika Medical Teknika Medical Teknika
Medical Teknika Medical Teknika Medical Teknika Medical Teknika Medical Teknika
Medical Teknika Medical Teknika Medical Teknika Medical Teknika Medical Teknika
お問い合わせ先 メディカルテクニカ有限会社
新型血圧測定 #ケアテイカメディカル
#VitalStream_type1
#ケアテイカ
#VitaStream_type2
血圧制御
#VitalStream_type3
#ケアテイカ
#VitalStream_caretaker
#ケアテイカ案内
#VitalStream_Cardiac_Surgery
#ケアテイカのカフの位置
#VitalStream_Hypertension
体内血圧測定
アルテリオグラフの中心血圧測定 オーグメンテイション フレイルティメータ 中心血検証をお願いします
アルテリオグラフの文献例
聴診等用標準器 医療機器校正器類 カルディオニクス製製品 カルディオニクス製シミュレータ
画像表示付き聴診器 医療用標準器 ワイヤレス校正器 同時聴診教育システム
モバイル聴診 聴診音同時多人数 電子聴診器のソフト 各種電子聴診器
モバイル聴診 血管狭窄診断聴診器 聴診音画像化聴診器 タイマ無し出力付き研究電子聴診器
#先天性心疾患ソフト Pedcath7 #Pedcath8 川崎病
Pedcath概要 Pedcathの本 Pedcathの仲間 Pedcath選定理由書
Pedcath参考画像 Pedcath品目 Pedcathマルティユーザ Pedcath拡張機能
佐野シャント ペドカスコンパニオン タブレット補助Pedcath
ラブテック社心臓リハビリ メタボリックテスト ラブテック社ワイヤレス12誘導心電計 ラブテック社12誘導心電計
ラブテック12誘導心電計 心電図解析 ラブテック社モバイル心電計 検診用心電計
#ラブテックホルタ心電計
#VectorECG
#ラブテックホルタ心電計
#VectorECG
#ラブテックホルタ心電計
#ベクトル心電図
#ラブテックホルタ心電計
#心房細動自動検出
#ラブテックホルタ心電計
#心房細動自動検出
#ラブテックネット心電図 シムレータ
ラブテック社心臓リハビリ
#ラブテックホルタ心電計資料
#PwaveAutoDetect
心臓リハビリ12誘導心電計 タブレットの12誘導心電図での利用例
Medical Teknika add link Medical Teknika add link Medical Teknika add link Medical Teknika add link
Medical Teknika add link Medical Teknika add link Medical Teknika add link Medical Teknika add link
Medical Teknika add link Medical Teknika add link Medical Teknika add link Medical Teknika add link
Medical Teknika add link Medical Teknika add link Medical Teknika add link Medical Teknika add link
Medical Teknika add link Medical Teknika add link Medical Teknika add link Medical Teknika add link
Medical Teknika add link Medical Teknika add link Medical Teknika add link Medical Teknika add link